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0 Abstract 

Cancer remains one of the greatest global health challenges, with standard “one-size-fits-all” 

treatments often leading to suboptimal outcomes, serious side effects, and escalating healthcare 

costs. Recent advances in gene expression profiling and artificial intelligence (AI) offer a promising 

solution by enabling treatments tailored to the genetic and molecular features of a patient’s tumor. 

To address this critical need, we introduce weCURA, a precision oncology platform designed to 

predict individual patient responses to cancer therapies—initially focusing on pancreatic and brain 

cancers, which have high mortality rates and limited treatment options. 

The AI-driven predictions consider both gene expression data and treatment responses, allowing 

clinicians to identify which treatments are most likely to be effective for specific tumor gene 

expression profiles. This iterative model is refined in near real-time through ongoing data 

contributions, bridging the gap between rapid laboratory discoveries and clinical application. By 

offering multiple revenue streams—including licensing, subscription-based access, and predictive 

analytics services—weCURA aims to remain sustainable while accelerating personalized care. 

Ultimately, weCURA’s personalized predictive framework has the potential to transform cancer 

treatment by minimizing trial-and-error approaches, reducing unnecessary side effects, and 

improving patient outcomes. Its dynamic adaptability ensures that as new research and biomarkers 

emerge, the model evolves to maintain clinical relevance, supporting a new era of truly patient-

tailored oncology. 
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1 Introduction 

1.1 Current cancer treatments don’t solve the problem 

One of the biggest global health challenges remains cancer. With almost 20 million new cases of 

cancer and over 9 million deaths due to cancer in 2022, new strategies to fight this disease are 

necessary (1). Current cancer treatments include surgery, radiation, and systemic therapies like 

chemotherapy, targeted therapy, hormonal therapy, and immunotherapy. These treatments are 

typically selected based on certain patient factors like sex, cancer stage, and tumor grade (2–4). 

However, this approach often falls short in delivering optimal outcomes for every individual. The 

process of identifying effective cancer treatments can be long and tedious, taking months or even 

years before a therapy proves successful in fighting the disease. Compounding this challenge is the 

issue of treatment resistance, where cancer cells adapt and no longer respond to a previously 

effective therapy (5). As a result, many cancer patients must undergo a range of treatments in the 

hope that at least one will yield a therapeutic benefit. 

 

Currently, the standard approach to cancer treatment is population-based, meaning that treatment 

recommendations are largely derived from clinical studies involving large groups of patients (6). 

Thus, these treatment decisions are guided by factors like the average responses of patients with 

similar cancer types, stages, and other demographic or clinical factors (4). While this method has 

led to significant advancements, it fails to account for the unique biological and genetic differences 

between individuals. This “one-size-fits-all” approach often leads to suboptimal outcomes for 

patients whose cancers do not conform to the patterns observed in population studies (7). For 

example, two patients diagnosed with the same type and stage of lung cancer may receive the same 

standard chemotherapy regimen based on clinical trial data. However, one patient’s tumor may 

harbor an EGFR mutation that makes it highly responsive to EGFR-targeted therapy, while the 

other patient’s cancer may have a KRAS mutation that renders it resistant to EGFR inhibitors. In 

this case, without molecular testing, the patient with the EGFR mutation might unnecessarily 

undergo a trial of chemotherapy, delaying access to more effective targeted treatment (8,9). A shift 

toward personalized medicine, which tailors treatments based on the specific characteristics of 

each patient’s cancer, is therefore essential to improve efficacy and reduce the burden of cancer 

worldwide. 

1.2 Solution: Personalizing cancer treatments 

One approach to developing personalized treatments is to identify biomarkers, such as genetic 

mutations, gene expression levels, or proteins, that can predict a patient’s sensitivity to the therapy 

of interest (10). Several studies have shown that especially gene expression levels of cancers have 

a huge impact on therapy outcome (11,12). However, there are too few effective tools that can 

help clinicians predict therapy outcomes per individual patient. 

 

In today’s rapidly evolving technological landscape, harnessing biomarker data and artificial 

intelligence (AI) is critical for addressing the clear need for more effective predictive tools. 

Researchers are developing novel methods to identify biomarkers that indicate whether a patient 

will respond to a particular therapy. These approaches show promise not only for targeted 
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therapies—designed to attack specific cancer cells—but also for immunotherapies, which boost 

the immune system’s ability to recognize and attack cancerous tissue. 

 

At PoSciDonDAO, we combine gene expression data linked to treatment sensitivity with AI to 

create weCURA: an advanced tool that predicts patient responses to cancer treatments based on 

each tumor’s unique gene expression profile. 

 

2 What is weCURA? 

 

weCURA is a precision oncology tool predicting patient responses to specific cancer treatments 

for skin, pancreatic and brain cancer based on patients’ genetic makeup. These three cancer types 

are particularly suitable for this AI model due to their high mortality rates, limited treatment 

options, and heterogeneity in tumor biology. Pancreatic cancer, often diagnosed at advanced 

stages, has one of the lowest survival rates among all cancers, emphasizing the urgent need for 

personalized therapeutic strategies (13–15). Similarly, brain cancers, such as glioblastoma, are 

notoriously aggressive and resistant to standard treatments, with survival outcomes that vary 

depending on the genetic background of the patient (16,17). Skin cancers, including melanoma, 

frequently exhibit distinct genetic mutations such as BRAF or NRAS, playing an important role in 

variable treatment responses and highlighting the importance of genetic profiling for effective 

therapy selection.(18) By leveraging AI to analyze the genetic makeup of patients with these 

cancers, weCURA aims to identify tailored treatment regimens, improving efficacy and reducing 

the trial-and-error approach often associated with cancer therapy. This approach has the potential 

to significantly enhance outcomes for patients facing these challenging diagnoses. 

 

3 Data Collection for weCURA 
 

To develop the AI model, it is essential to gather in vitro data from preferably near-patient 3-

dimensional models such as spheroids and organoids alongside the corresponding drug treatment 

responses to enable accurate predictions. The data collection process is streamlined into two 

distinct pipelines (Figure 1). 
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                                                       Figure 1. Pipelines for data collection for weCURA 

3.1 Pipeline 1 

The first approach for data collection involves mining gene expression levels and drug-response 

profiles from reputable published databases, such as Gene Expression Omnibus, DepMap and the 

Genomics of Drug Sensitivity in Cancer. These databases provide a wealth of high-quality, publicly 

available data essential for building the AI model. After retrieving the data, an AI agent will process 

and organize it systematically, ensuring seamless integration into the weCURA repository for 

further analysis and use in model training.  

3.2 Pipeline 2 

For an alternative method for data collection, we will collaborate with scientists who can contribute 

the necessary data. These researchers will manually curate the information and submit it through 

our online submission system, ensuring its direct integration into the weCURA repository. To 

acknowledge their valuable contributions, participating scientists will be rewarded with SCI tokens, 

providing both recognition and incentive for their efforts. 

 

4 weCURA Model Overview 
 

Once the initial phase of data collection is complete—though this will remain an ongoing effort 

as new research emerges—we will focus on building, training, and validating the AI model to 

predict drug responses for pancreatic and brain cancers. weCURA leverages a gradient-boosted 

tree model (XGBoost), specifically selected for its robust performance on gene expression data, 

interpretability, and effectiveness even with small to moderate dataset sizes. Validation is a critical 

step in ensuring the model's accuracy and reliability, made possible through continuous 

contributions from scientists conducting cutting-edge research. These researchers will provide 

curated datasets, which will not only expand the weCURA repository but also enable iterative 

testing and refinement of the model. 
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To address the variability in data availability, we will develop two distinct model pipelines: one 

trained exclusively on genetic information and another incorporating both genetic data and gene 

expression levels. The first model will predict whether a patient with a specific tumor gene is likely 

to respond to a given treatment, while the second model will estimate the degree of sensitivity a 

patient may exhibit to that treatment. As new datasets become available, these predictions can be 

validated against real-world experimental outcomes, ensuring the model remains accurate and 

clinically relevant. 

 

This iterative validation process allows the AI model to adapt and evolve in near real-time, 

incorporating the latest scientific discoveries, such as novel biomarkers or new drug therapies. By 

comparing predictions against experimental results provided by participating scientists, 

discrepancies can guide adjustments to the model, enhancing its predictive power. This dynamic 

approach ensures the AI model grows into a robust, versatile, and reliable tool for precision 

oncology, capable of tailoring treatments to individual patients as the field advances. 

4.1 Technical Model Construction Steps 

Building the weCURA model involves a multi-stage pipeline that transforms raw genetic and gene-

expression data into actionable predictions of drug response for pancreatic and brain cancers. 

Below is an overview of the core steps: 

1. Data Ingestion & Preprocessing 

○ Data Consolidation: Integrate datasets from both Pipeline 1 (AI agent trained 

on public repositories) and Pipeline 2 (curated data from scientists). 

○ Normalization RNA: Standardize gene expression measurements, such as 

converting raw read counts to TPM (Transcripts Per Million). This ensures 

comparability across different studies and sequencing platforms. 

○ Normalization Sensitivity: Standardize sensitivity data, such as determining the 

area under the curve (AUC) of the dose-response curve or the half maximum 

effective concentration (EC50).  

○ Data Labeling: Align each sample’s gene expression profile with quantitative 

sensitivity metrics for each drug tested. 

○ Quality Checks: Perform consistency checks to remove duplicated or 

contradictory entries. When possible, employ statistical harmonization to mitigate 

differences in assay protocols and measurement scales (e.g., normalizing EC50 

ranges across studies). 

 

2. Model Architecture & Pipeline Setup 

○ Single-Modality Model: Implement gradient-boosted decision trees (XGBoost) 

that outputs a binary label—responsive vs. non-responsive—based solely on gene 

expression profiles. 

○ Hyperparameter Tuning: Use automated techniques like Bayesian 

Optimization to find optimal learning rates and tree depth, number of boosting 
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rounds, and other parameters to maximize predictive performance. 

 

3. Training & Cross-Validation 

○ Data Splitting: Split the combined dataset into training, validation, and test sets.  

○ Model Training: We will train the gradient-boosted tree model to convergence 

by minimizing a suitable loss function (e.g., binary log-loss) using built-in 

optimization routines. Monitor metrics such as accuracy, sensitivity, and 

specificity to gauge predictive performance. 

○ Regularization & Generalization: To limit overfitting, we will apply techniques 

such as early stopping, limiting tree depth, setting minimum child weight, and 

using L1/L2 regularization on leaf weights. Gradient boosting frameworks like 

XGBoost inherently manage some overfitting through their ensemble nature and 

configurable regularization parameters. 

 

4. Validation with Real-World Data 

○ External Datasets: Continually incorporate new in vitro or ex vivo data points 

from participating scientists or new public datasets—preferably data from 3D 

organoid models or patient-derived xenografts (PDXs). 

○ Performance Monitoring: Compare predicted drug responses against 

experimentally measured outcomes (e.g., EC50 values from viability assays). Use 

metrics like mean squared error (for regression-based sensitivity estimates) or 

confusion matrices (for binary classification) to assess model accuracy. 

 

5. Model Refinement & Deployment 

○ Continuous Learning: Integrate new curated datasets into the training pipeline, 

re-running hyperparameter tuning or ensemble updates to capture emerging 

biomarkers or drug-response patterns. 

○ Discrepancy Analysis: Investigate cases where predictions and experimental / 

clinical results differ; these insights inform both biological follow-ups and model 

improvements. 

○ Deployment & API: The final model will be deployed as a containerized 

microservice with a RESTful API, enabling secure and versioned drug-response 

predictions. SHAP will be integrated for model explainability, with frontend 

support for input submission and result visualization. 

By following these steps—ranging from extensive data preprocessing and model design to 

continuous validation and learning—the weCURA platform can become a cutting-edge, reliable 

resource for precision oncology, evolving in simultaneously with new and up to date research 

insights. 

 

5 Business Model 

Generating revenue from the weCURA model can be achieved through multiple avenues. Here’s 

an outline of potential strategies: 
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1. Licensing Agreements 

• Pharmaceutical Companies: License the model to pharmaceutical companies for use 

in drug discovery, development, and clinical trial optimization. The model's ability to 

predict drug responses can help identify promising compounds, reduce development 

costs, and streamline trial designs. 

• Clinical Labs and Hospitals: Offer licenses to clinical laboratories and hospitals to 

integrate the model into their diagnostic workflows. This could support oncologists in 

making personalized treatment recommendations for their patients. 

2. Subscription-Based Access 

• Platform as a Service (PaaS): Develop a subscription-based platform where 

researchers, clinicians, and biotech companies can access the model’s predictions and 

datasets. Tiers can vary based on access level, prediction volume, or additional features 

such as real-time updates and advanced analytics. 

3. Data Partnerships 

• Partner with organizations to exchange access to datasets in return for a licensing fee or 

profit-sharing arrangement. Companies or research institutions contributing data can 

gain tailored predictions while expanding the model’s repository, creating a mutually 

beneficial relationship. 

4. Custom Model Development 

• Offer tailored versions of the weCURA model for specific clients, such as companies 

focusing on rare cancers or niche therapeutic areas. These custom models could include 

client-specific genetic markers, datasets, or proprietary drug compounds. 

5. Predictive Analytics Services 

• Provide direct predictive analytics as a service, charging clients for reports or insights on 

their datasets without requiring them to license the entire model. This approach is 

particularly attractive for smaller biotech startups or academic researchers. 

6. Integration with Drug Development Pipelines 

• Collaborate with biotech firms to integrate the model into their drug development 

pipelines. Revenue could be generated through milestone payments, such as success fees 

for identifying drug candidates, or royalties based on the commercial success of drugs 

informed by the model. 

8. Training and Certification 
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• Create training programs or certifications for clinicians and researchers on using the 

weCURA model effectively. Charge for enrollment in these programs, either as 

workshops or online courses. 

9. Public-Private Partnerships 

• Collaborate with healthcare providers, governments, or insurance companies to integrate 

the model into national or regional cancer treatment programs. Revenue could come 

from long-term contracts or shared cost savings achieved through personalized treatment 

optimization. 

10. AI-Driven Drug Repurposing 

• Use the model to identify new therapeutic applications for existing drugs (drug 

repurposing). Revenue can be generated by licensing these insights to pharmaceutical 

companies or through co-development agreements. 

By diversifying revenue streams across licensing, service-based models, and strategic 

collaborations, weCURA can maximize its commercial potential while driving advancements in 

precision oncology. 
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6 Clinical Relevance 
 

The clinical relevance of the weCURA model lies in its transformative potential to bridge the gap 

between laboratory discoveries and personalized patient care, placing the patient at the heart of 

innovation. By predicting drug responses with high precision, the model equips clinicians with 

invaluable insights to make informed, evidence-based decisions about the most effective 

treatments for individual patients. This not only reduces the trial-and-error approach often 

associated with cancer treatment but also minimizes the risk of unnecessary side effects and 

multiple trial rounds of expensive treatments, improving the overall quality of life for patients. 

 

This capability becomes even more critical in skin, pancreatic and brain cancers, where therapeutic 

options are often limited, prognosis can be dire, and time is of the essence. For these patients, 

tailored treatment strategies are not just a luxury—they are a lifeline. By leveraging advanced 

predictive analytics, the weCURA model provides hope where traditional approaches may fall 

short, helping identify therapies that are most likely to succeed based on a patient’s unique genetic 

and molecular profile. 

 

Furthermore, by incorporating real-world experimental outcomes and iterating continuously with 

emerging data, the weCURA model evolves alongside the latest scientific advancements. This 

dynamic adaptability ensures that patients benefit from cutting-edge discoveries, such as novel 

biomarkers or breakthrough drugs, as soon as they become available. Ultimately, the model serves 

as a vital tool in guiding clinical decisions, expediting the translation of research into meaningful, 

impactful outcomes that directly benefit patients. By empowering clinicians with actionable 

predictions, the weCURA model has the potential to extend survival, enhance quality of life, and 

offer renewed hope to patients and their families. 
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